Models for Intensive Longitudinal Data

Couverture du livre « Models for Intensive Longitudinal Data » de Theodore A Walls aux éditions Oxford University Press
  • Nombre de pages : (non disponible)
  • Collection : (non disponible)
  • Genre : (non disponible)
  • Thème : Non attribué
  • Prix littéraire(s) : (non disponible)
Résumé:

Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for... Voir plus

Rapid technological advances in devices used for data collection have led to the emergence of a new class of longitudinal data: intensive longitudinal data (ILD). Behavioral scientific studies now frequently utilize handheld computers, beepers, web interfaces, and other technological tools for collecting many more data points over time than previously possible. Other protocols, such as those used in fMRI and monitoring of public safety, also produce ILD, hence the statistical models in this volume are applicable to a range of data. The volume features state-of-the-art statistical modeling strategies developed by leading statisticians and methodologists working on ILD in conjunction with behavioral scientists. Chapters present applications from across the behavioral and health sciences, including coverage of substantive topics such as stress, smoking cessation, alcohol use, traffic patterns, educational performance and intimacy.
Models for Intensive Longitudinal Data (MILD) is designed for those who want to learn about advanced statistical models for intensive longitudinal data and for those with an interest in selecting and applying a given model. The chapters highlight issues of general concern in modeling these kinds of data, such as a focus on regulatory systems, issues of curve registration, variable frequency and spacing of measurements, complex multivariate patterns of change, and multiple independent series. The extraordinary breadth of coverage makes this an indispensable reference for principal investigators designing new studies that will introduce ILD, applied statisticians working on related models, and methodologists, graduate students, and applied analysts working in a range of fields. A companion Web site at www.oup.com/us/MILD contains program examples and documentation.

Donner votre avis

Les derniers avis

Ce livre n'a pas encore d'avis. Donnez le vôtre et partagez-le avec la communauté de lecteurs.com

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.

Où trouver ce livre en librairie ?

Service proposé en partenariat avec Place des Libraires

Discussions autour de ce livre

Il n'y a pas encore de discussion sur ce livre

Soyez le premier à en lancer une !

Forum

Afficher plus de discussions