Fractions Continues Multidimensionnelles

Couverture du livre « Fractions Continues Multidimensionnelles » de Chandoul-A aux éditions Editions Universitaires Europeennes
Résumé:

L'objectif de ce livre est l'étude métrique et combinatoire des fractions continues multidimensionelles dans le cas des séries formelles. Elle comporte deux parties 1- On démontre la convergence forte et exponentielle de l'algorithme de Jacobi- Perron ( version homogène) dans le cas de séries... Voir plus

L'objectif de ce livre est l'étude métrique et combinatoire des fractions continues multidimensionelles dans le cas des séries formelles. Elle comporte deux parties 1- On démontre la convergence forte et exponentielle de l'algorithme de Jacobi- Perron ( version homogène) dans le cas de séries formelles. On donne des résultats analogues pour la version de Dubois de cet algorithme. Dans la même direction, on prouve que la convergence de l'algorithme de Brun n'est pas exponentielle. 2- On étudie la relation entre les polynômes irréductibles et les éléments de Pisot dans le cas des séries formelles tout en déterminant le nombre de ces éléments en fonction du degré et de la hauteur logarithmique. Par conséquent, on donne une minoration du nombre des polynômes irréductibles à deux variables sur un corps fini. Mots-clef : Séries formelles sur un corps fini, fractions continues multidimensionnelles, algorithme de Jacobi-Perron, algorithme de Brun, convergence, polynômes irréductibles, séries de Pisot.

Donner votre avis

Les derniers avis

Ce livre n'a pas encore d'avis. Donnez le vôtre et partagez-le avec la communauté de lecteurs.com

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.

Où trouver ce livre en librairie ?

Service proposé en partenariat avec Place des Libraires

Discussions autour de ce livre

Il n'y a pas encore de discussion sur ce livre

Soyez le premier à en lancer une !

Forum

Afficher plus de discussions