Approximation De Quasi-Periodes De Varietes Abeliennes

Couverture du livre « Approximation De Quasi-Periodes De Varietes Abeliennes » de Grinspan-P aux éditions Editions Universitaires Europeennes
Résumé:

Périodes et "quasi-périodes" d''une variété abélienne A définie sur un sous-corps de C s''obtiennent par intégration, le long des chemins fermés sur A(C), des différentielles rationnelles sur A, méromorphes et sans résidus de sorte que ces intégrales soient bien définies. Au premier chapitre de... Voir plus

Périodes et "quasi-périodes" d''une variété abélienne A définie sur un sous-corps de C s''obtiennent par intégration, le long des chemins fermés sur A(C), des différentielles rationnelles sur A, méromorphes et sans résidus de sorte que ces intégrales soient bien définies. Au premier chapitre de la thèse, la «méthode modulaire» de Barré, Diaz, Gramain, Philibert et Nesterenko est utilisée pour obtenir notamment une mesure d''approximation algébrique du quotient d''une période d''une courbe elliptique définie sur Q par sa quasi-période associée, améliorant un résultat récent de N. Saradha. Puis, dans la deuxième partie, nous étudions diverses extensions possibles des théorèmes de Chudnovsky (des années 70) sur l''indépendance algébrique de quasi-périodes de courbes elliptiques - extensions aux variétés abéliennes de dimension quelconque, et résultats d''approximation (algébrique) simultanée précisant les assertions d''indépendance algébrique. Au coeur des deux parties se trouve une astuce suggérée par Chudnovsky au début des années 80, consistant à faire apparaître des propriétés de «G-fonctions» dans les estimations arithmétiques de la preuve de transcendance.

Donner votre avis

Donnez votre avis sur ce livre

Pour donner votre avis vous devez vous identifier, ou vous inscrire si vous n'avez pas encore de compte.

Où trouver ce livre en librairie ?

Service proposé en partenariat avec Place des Libraires

Suggestions de lecture

Discussions autour de ce livre

Il n'y a pas encore de discussion sur ce livre

Soyez le premier à en lancer une !

Forum

Afficher plus de discussions